Modulhandbuch für den Studiengang
Bachelor Angewandte Informatik, PO-Version 19 WS

Inhaltsverzeichnis

1. Studienabschnitt

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIN-100</td>
<td>Mathematik 1</td>
<td>4</td>
</tr>
<tr>
<td>BIN-100-01</td>
<td>Mathematik 1</td>
<td>5</td>
</tr>
<tr>
<td>BIN-101</td>
<td>Startprojekt</td>
<td>6</td>
</tr>
<tr>
<td>BIN-101-01</td>
<td>Startprojekt</td>
<td>7</td>
</tr>
<tr>
<td>BIN-102</td>
<td>Programmieren 1</td>
<td>8</td>
</tr>
<tr>
<td>BIN-102-01</td>
<td>Programmieren 1</td>
<td>9</td>
</tr>
<tr>
<td>BIN-103</td>
<td>Grundlagen der Informatik</td>
<td>10</td>
</tr>
<tr>
<td>BIN-103-01</td>
<td>Grundlagen der Informatik</td>
<td>11</td>
</tr>
<tr>
<td>BIN-104</td>
<td>Theoretische Informatik</td>
<td>12</td>
</tr>
<tr>
<td>BIN-104-01</td>
<td>Theoretische Informatik</td>
<td>13</td>
</tr>
<tr>
<td>BIN-105</td>
<td>Mathematik 2</td>
<td>14</td>
</tr>
<tr>
<td>BIN-105-01</td>
<td>Mathematik 2</td>
<td>15</td>
</tr>
<tr>
<td>BIN-106</td>
<td>Datenbanksysteme 1</td>
<td>16</td>
</tr>
<tr>
<td>BIN-106-01</td>
<td>Datenbanksysteme 1</td>
<td>17</td>
</tr>
<tr>
<td>BIN-107</td>
<td>Statistik</td>
<td>18</td>
</tr>
<tr>
<td>BIN-107-01</td>
<td>Statistik</td>
<td>19</td>
</tr>
<tr>
<td>BIN-108</td>
<td>Programmieren 2</td>
<td>20</td>
</tr>
<tr>
<td>BIN-108-01</td>
<td>Programmieren 2</td>
<td>21</td>
</tr>
<tr>
<td>BIN-109</td>
<td>Algorithmen und Datenstrukturen</td>
<td>22</td>
</tr>
<tr>
<td>BIN-109-01</td>
<td>Algorithmen und Datenstrukturen</td>
<td>23</td>
</tr>
<tr>
<td>BIN-110</td>
<td>Programmieren 3</td>
<td>24</td>
</tr>
<tr>
<td>BIN-110-01</td>
<td>Programmieren 3</td>
<td>25</td>
</tr>
<tr>
<td>BIN-111</td>
<td>Mathematik 3</td>
<td>26</td>
</tr>
<tr>
<td>BIN-111-01</td>
<td>Mathematik 3</td>
<td>27</td>
</tr>
<tr>
<td>Code</td>
<td>Kurs</td>
<td>Seiten</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>BIN-112</td>
<td>Betriebssysteme und Netze 1</td>
<td>28</td>
</tr>
<tr>
<td>BIN-112-01</td>
<td>Betriebssysteme und Netze 1</td>
<td>29</td>
</tr>
<tr>
<td>BIN-113</td>
<td>Datenbanksysteme 2</td>
<td>30</td>
</tr>
<tr>
<td>BIN-113-01</td>
<td>Datenbanksysteme 2</td>
<td>31</td>
</tr>
<tr>
<td>BIN-114</td>
<td>Programmierprojekt</td>
<td>32</td>
</tr>
<tr>
<td>BIN-114-01</td>
<td>Programmierprojekt</td>
<td>33</td>
</tr>
<tr>
<td>BIN-115</td>
<td>Betriebswirtschaft</td>
<td>34</td>
</tr>
<tr>
<td>BIN-115-01</td>
<td>Betriebswirtschaft</td>
<td>35</td>
</tr>
<tr>
<td>BIN-116</td>
<td>Englisch</td>
<td>36</td>
</tr>
<tr>
<td>BIN-116-01</td>
<td>Englisch</td>
<td>37</td>
</tr>
<tr>
<td>Pflichtmodule 2. Studienabschnitt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIN-200</td>
<td>Computergrafik 1</td>
<td>38</td>
</tr>
<tr>
<td>BIN-200-01</td>
<td>Computergrafik 1</td>
<td>39</td>
</tr>
<tr>
<td>BIN-201</td>
<td>Software Engineering 1</td>
<td>40</td>
</tr>
<tr>
<td>BIN-201-01</td>
<td>Software Engineering 1</td>
<td>41</td>
</tr>
<tr>
<td>BIN-202</td>
<td>Betriebssysteme und Netze 2</td>
<td>42</td>
</tr>
<tr>
<td>BIN-202-01</td>
<td>Betriebssysteme und Netze 2</td>
<td>43</td>
</tr>
<tr>
<td>BIN-203</td>
<td>Webtechnologien</td>
<td>44</td>
</tr>
<tr>
<td>BIN-203-01</td>
<td>Webtechnologien</td>
<td>45</td>
</tr>
<tr>
<td>BIN-204</td>
<td>Seminar</td>
<td>46</td>
</tr>
<tr>
<td>BIN-204-01</td>
<td>Seminar</td>
<td>47</td>
</tr>
<tr>
<td>BIN-205</td>
<td>Software Engineering 2</td>
<td>48</td>
</tr>
<tr>
<td>BIN-205-01</td>
<td>Software Engineering 2</td>
<td>49</td>
</tr>
<tr>
<td>BIN-206</td>
<td>Praxisprojekt 1</td>
<td>50</td>
</tr>
<tr>
<td>BIN-206-01</td>
<td>Praxisprojekt 1</td>
<td>51</td>
</tr>
<tr>
<td>BIN-207</td>
<td>Computergrafik 2</td>
<td>52</td>
</tr>
<tr>
<td>BIN-207-01</td>
<td>Computergrafik 2</td>
<td>53</td>
</tr>
<tr>
<td>BIN-208</td>
<td>Praxisprojekt 2</td>
<td>54</td>
</tr>
<tr>
<td>BIN-208-01</td>
<td>Praxisprojekt 2</td>
<td>55</td>
</tr>
<tr>
<td>BIN-209</td>
<td>Ergänzende Fächer (Variierendes Angebot der Wahlpflichtfächer)</td>
<td>56</td>
</tr>
<tr>
<td>BIN-210</td>
<td>Bachelorarbeit mit Kolloquium</td>
<td>57</td>
</tr>
<tr>
<td>BIN-210-01</td>
<td>Bachelorarbeit mit Kolloquium</td>
<td>58</td>
</tr>
<tr>
<td>Wahlpflichtmodule 2. Studienabschnitt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIN-211</td>
<td>Computergrafik 3</td>
<td>59</td>
</tr>
<tr>
<td>MDI-216-01</td>
<td>Computergrafik 3</td>
<td>60</td>
</tr>
<tr>
<td>BIN-212</td>
<td>Software Engineering 3</td>
<td>61</td>
</tr>
<tr>
<td>BIN-212-01</td>
<td>Software Engineering 3</td>
<td>62</td>
</tr>
<tr>
<td>BIN-213</td>
<td>Betriebssysteme und Netze 3</td>
<td>63</td>
</tr>
<tr>
<td>BIN-213-01</td>
<td>Betriebssysteme und Netze 3</td>
<td>64</td>
</tr>
<tr>
<td>BIN-214</td>
<td>Datenbanksysteme 3</td>
<td>65</td>
</tr>
<tr>
<td>BIN-214-01</td>
<td>Datenbanksysteme 3</td>
<td>66</td>
</tr>
<tr>
<td>Code</td>
<td>Kurs</td>
<td>Seiten</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>BIN-215</td>
<td>Parallele Programmierung</td>
<td>67</td>
</tr>
<tr>
<td>BIN-215-01</td>
<td>Parallele Programmierung</td>
<td>68</td>
</tr>
<tr>
<td>BIN-216</td>
<td>Aktuelle Aspekte der Informatik 1</td>
<td>69</td>
</tr>
<tr>
<td>BIN-216-01</td>
<td>Aktuelle Aspekte der Informatik 1</td>
<td>70</td>
</tr>
<tr>
<td>BIN-217</td>
<td>Aktuelle Aspekte der Informatik 2</td>
<td>71</td>
</tr>
<tr>
<td>BIN-217-01</td>
<td>Aktuelle Aspekte der Informatik 2</td>
<td>72</td>
</tr>
<tr>
<td>BIN-218</td>
<td>Wissenschaftliches Arbeiten in der Informatik</td>
<td>73</td>
</tr>
<tr>
<td>BIN-218-01</td>
<td>Wissenschaftliches Arbeiten in der Informatik</td>
<td>74</td>
</tr>
<tr>
<td>BIN-219</td>
<td>Kryptographie und Algorithmen</td>
<td>75</td>
</tr>
<tr>
<td>BIN-219-01</td>
<td>Kryptographie und Algorithmen</td>
<td>76</td>
</tr>
</tbody>
</table>
Modul BIN-100 Mathematik 1

Untertitel
Mathematische Grundlagen der Informatik (BIN-MAT1)

Modulniveau
Grundlagenmodul

Pflicht / Wahlpflicht
Pflichtmodul

Teilmodule
BIN-100-01 Mathematik 1, Pflicht

Verantwortliche(r)
Sprengel, Frauke, Prof. Dr.

Credits
6

Präsenzstunden / Selbststudium
68 h / 112 h

Studiensemester
1

Moduldauer
1 Semester

Voraussetzungen nach Prüfungsordnung
keine

Empfohlene Voraussetzungen
keine

Studien-/ Prüfungsleistungen
Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Formale Kompetenz: Kenntnisse der Logik und Vertrautheit mit mathematischen Formalismen zur Beschreibung von Sachverhalten
Algorithmische und mathematische Kompetenz: Kennenlernen mathematischer Algorithmen, geeignete Lösungsverfahren für elementare Probleme der Mathematik und Informatik auswählen und durchführen
Übergreifend: kommunikative Kompetenz (Präsentation und Diskussion von Lösungsvorschlägen)
Teilmodul BIN-100-01 Mathematik 1

Untertitel: Mathematische Grundlagen der Informatik (BIN-MAT1, MDI-MAT1)
Verantwortliche(r): Sprengel, Frauke, Prof. Dr.
Sprache: Deutsch
Zuordnung zu Curricula: BIN, MDI
Veranstaltungsart, SWS: Vorlesung mit Übung, 4 SWS
Credits: 6
Präsenzstunden / Selbststudium: 68 h / 112 h
Studiensemester: 1
Empfehlungen zum Selbststudium: siehe Literatur
Empfohlene Voraussetzungen: keine
Studien-/ Prüfungsleistungen: Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße: 100

Angestrebte Lernergebote:
Formale Kompetenz: Kenntnisse der Logik und Vertrautheit mit mathematischen Formalismen zur Beschreibung von Sachverhalten
Algorithmische und mathematische Kompetenz: Kennenlernen mathematischer Algorithmen, geeignete Lösungsverfahren für elementare Probleme der Mathematik und Informatik auswählen und durchführen Übergreifend: kommunikative Kompetenz (Präsentation und Diskussion von Lösungsvorschlägen)

Inhalt:
Die vermittelten Grundlagen der höheren Mathematik umfassen ausgewählte Themen aus den Bereichen
- Logik, Boolesche Algebra, Vollständige Induktion
- Mengenlehre
- Zahlensysteme und Zahlenbereiche
- Funktionen und Relationen
- Graphentheorie
- elementare Zahlentheorie
Zur Veranschaulichung der Begriffe und Verfahren wird entsprechende Standardsoftware eingesetzt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Selbständiges Bearbeiten von Übungsaufgaben, Diskussion

Anforderungen des Selbststudiums
Vor- und Nachbereitung, Literaturarbeit, Selbständiges Bearbeiten von Übungsaufgaben, Diskussion

Literatur
Skript zur Vorlesung
Teschl, G., Teschl, S.: Mathematik für Informatiker, Springer - Verlag
Hartmann, P.: Mathematik für Informatiker, Vieweg - Verlag
Modul BIN-101 Startprojekt

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-STP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-101-01 Startprojekt, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Garmann, Robert, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Präsenztunden / Selbstdienst</td>
<td>90 h / 30 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Selbstkompetenz: Die Studierenden identifizieren erfolgreiche Strategien der Selbstorganisation, Eigeninitiative, Recherche und Wissensaneignung.

Soziale Kompetenz: Die Studierenden haben Teamarbeit ausprobiert und kennen die Bedeutung der Kommunikations- und Präsentationsfähigkeiten für den Projekterfolg.

Projektmanagementkompetenz: Die Studierenden kennen einfache Methoden zur Projektplanung und Projektkontrolle und können diese in einem kleinen Projekt anwenden.

Fachkompetenz: Die Studierenden kennen die hohe Anwendungsbandbreite der Disziplin Informatik. Sie sind in der Lage, über ein fachspezifisches Problem zielgerichtet zu debattieren, es zu analysieren und über einen mehrwöchigen Zeitraum eine Lösung zu entwickeln.
Teilmodul BIN-101-01 Startprojekt

Untertitel (BIN-STP, MDI-STP)
Verantwortliche(r) Garmann, Robert, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Projekt, 4 SWS
Credits 4
Präsenzstunden / Selbststudium 90 h / 30 h
Studiensemester 1
Empfehlungen zum Selbststudium projektspezifisch
Empfohlene Voraussetzungen keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 5

Angestrebte Lernergebnisse
Selbstkompetenz: Die Studierenden identifizieren erfolgreiche Strategien der Selbstorganisation, Eigeninitiative, Recherche und Wissensaneignung.
Soziale Kompetenz: Die Studierenden haben Teamarbeit ausprobiert und kennen die Bedeutung der Kommunikations- und Präsentationsfähigkeiten für den Projekterfolg.
Projektmanagementkompetenz: Die Studierenden kennen einfache Methoden zur Projektplanung und Projektkontrolle und können diese in einem kleinen Projekt anwenden.
Fachkompetenz: Die Studierenden kennen die hohe Anwendungsbandbreite der Disziplin Informatik. Sie sind in der Lage, über ein fachspezifisches Problem zielgerichtet zu debattieren, es zu analysieren und über einen mehrwöchigen Zeitraum eine Lösung zu entwickeln.

Inhalt

Anforderungen der Präsenzzeit

Anforderungen des Selbststudiums
Aktive Erarbeitung von Projektergebnissen. Vor- und Nachbereitung von Teamsitzungen

Literatur
projektspezifisch
Modul BIN-102 Programmieren 1

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-PR1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-102-01 Programmieren 1, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Garmann, Robert, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Algorithmische Kompetenz: eine konkrete Problemstellung analysieren und algorithmisch lösen können, grundlegende Algorithmen und Datenstrukturen zur Lösung von Problemen einsetzen
Realisierungs-Kompetenz: Beherrschung des imperativen Programmierparadigmas unter Nutzung von Objektbibliotheken, Erstellen und Testen von Programmen unter Einsatz entsprechender Werkzeuge
Teilmodul BIN-102-01 Programmieren 1

Untertitel (BIN-PR1)
Verantwortliche(r) Garmann, Robert, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstdstudium 68 h / 112 h
Studiensemester 1
Empfehlungen zum Selbstdstudium siehe Literatur
Empfohlene Voraussetzungen keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 70

Angestrebte Lernergebnisse
Algorithmische Kompetenz: eine konkrete Problemstellung analysieren und algorithmisch lösen können, grundlegende Algorithmen und Datenstrukturen zur Lösung von Problemen einsetzen
Realisierungs-Kompetenz: Beherrschung des imperativen Programmierparadigmas unter Nutzung von Objektbibliotheken, Erstellen und Testen von Programmen unter Einsatz entsprechender Werkzeuge

Inhalt
Behandelt werden u.a. Grundlagen der Programmierung - Problem, Algorithmus, Programm, Grundlagen der objektorientierten Programmierung - Pakete, Klassen, Objekte, Einfache und strukturierte Datentypen, Kontrollstrukturen, Ein-/Ausgabe, Behandlung von Ausnahmen, Abstraktion, Rekursion

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung, Bearbeiten von Übungsaufgaben

Literatur
Skript zur Vorlesung
Reges, S., Stepp, M.: Building Java Programs, Prentice Hall
Modul BIN-103 Grundlagen der Informatik

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-GDI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-103-01 Grundlagen der Informatik, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Wohlfeil, Stefan, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstdstudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Informatik-Kompetenz: Kennen und verstehen des Aufbaus und der Funktionsweise von Computern; Effizientes Benutzen von UNIX-Systemen nur mit der Kommandozeile; Programmierung in Assembler; Kennen und verstehen des Aufbaus und der Funktionsweise von Netzen wie dem Internet.

Allgemeine Kompetenz: Selbstständiges Erarbeiten (Lesen und verstehen) von Informatik-Themen mit Hilfe wissenschaftlicher Literatur.
Teilmodul BIN-103-01 Grundlagen der Informatik

Untertitel (BIN-GDI, MDI-GDI)
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen Keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 100

Angestrebte Lernergebnisse
Informatik-Kompetenz: Kennen und verstehen des Aufbaus und der Funktionsweise von Computern; Effizientes Benutzen von UNIX-Systemen nur mit der Kommandozeile; Programmierung in Assembler; Kennen und verstehen des Aufbaus und der Funktionsweise von Netzen wie dem Internet. Allgemeine Kompetenz: Selbstständiges Erarbeiten (Lesen und verstehen) von Informatik-Themen mit Hilfe wissenschaftlicher Literatur.

Inhalt

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung der Lehrveranstaltungen, erfolgreiches Bearbeiten der Übungsaufgaben, eigenständige Vertiefung der Inhalte mit Hilfe der Literatur

Literatur
Helmut Herold, Bruno Lutz, Jürgen Wohlrab; Grundlagen der Informatik; Pearson Studium; 2012
Modul BIN-104 Theoretische Informatik

Untertitel (BIN-TI)
Modulniveau Grundlagenmodul
Pflicht/Wahlpflicht Pflichtmodul
Teilmodule BIN-104-01 Theoretische Informatik, Pflicht
Verantwortliche(r) Kleiner, Carsten, Prof. Dr.
Credits 6
Präsenzstunden/Selbststudium 68 h / 112 h
Studiensemester 1
Moduldauer 1 Semester
Voraussetzungen nach Keine
Prüfungsordnung
Empfohlene Voraussetzungen Keine
Studien-/Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Formale, algorithmische, mathematische Kompetenzen: formale Sprachen, die sie erzeugenden Grammatiken und die sie erkennenden Automaten kennen, Probleme mithilfe von Algorithmen durch entsprechenden Automaten lösen lassen, reguläre Ausdrücke kennen und für bestimmte Muster definieren können
Analyse- und Design-Kompetenzen: Konzept der Berechenbarkeit kennen und nicht berechenbare Probleme erkennen, eigene Sprachen definieren und einen Parser dafür implementieren, Probleme analysieren, abstrahieren und die essentiellen Bestandteile mithilfe von einfachen Automaten und Kellerautomaten lösen
Methodenkompetenz: Übertragbarkeit von Problemen in verschiedene Lösungsvarianten erkennen können, alternative Beschreibungen derselben Sprachklasse erkennen und verwenden können
Teilmodul BIN-104-01 Theoretische Informatik

Untertitel
Verantwortliche(r)
Sprache
Zuordnung zu Curricula
Veranstaltungsart, SWS
Credits
Präsenzstunden / Selbstdstudium
Studiensemester
Empfehlungen zum Selbstdstudium
Empfohlene Voraussetzungen
Studien-/ Prüfungsleistungen
Gruppengröße

Angestrebte Lernergebnisse
Formale, algorithmische, mathematische Kompetenzen: formale Sprachen, die sie erzeugenden Grammatiken und die sie erkennenden Automaten kennen, Probleme mithilfe von Algorithmen durch entsprechenden Automaten lösen lassen, reguläre Ausdrücke kennen und für bestimmte Muster definieren können
Analyse- und Design-Kompetenzen: Konzept der Berechenbarkeit kennen und nicht berechenbare Probleme erkennen, eigene Sprachen definieren und einen Parser dafür implementieren, Probleme analysieren, abstrahieren und die essentiellen Bestandteile mithilfe von einfachen Automaten und Kellerautomaten lösen
Methodenkompetenz: Übertragbarkeit von Problemen in verschiedene Lösungsvarianten erkennen können, alternative Beschreibungen derselben Sprachklasse erkennen und verwenden können

Inhalt
Grundlegende Kenntnisse über Automaten- und Maschinenmodelle unterschiedlicher Komplexität (endliche Automaten, Kellerautomaten, Turing-Maschinen), verschiedene Klassen formaler Sprachen, Chomsky-Hierarchie und verschiedene Beschreibungsformen der Sprachen einer Klasse, Grundlagen des Compilerbaus

Anforderungen der Präsenzzeit

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung der Vorlesungen und Übungen, selbständige Bearbeitung von Aufgaben, Abgabe von Hausübungen in Kleingruppen, selbständige Lösung von Projektaufgaben in Kleingruppen, Prüfungsvorbereitung, Literaturstudium

Literatur
G. Vossen/K.-U. Witt: Grundkurs Theoretische Informatik, 3. Auflage, Vieweg
J.Hopcroft/R. Motwani/J. Ullman: Introduction to Automata Theory, Languages and Computation (2.Auflage), Addison-Wesley

Stand: 06. November 2019
Modul BIN-105 Mathematik 2

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>Lineare Algebra und analytische Geometrie (BIN-MAT2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-105-01 Mathematik 2, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Pigors, Adrian, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsentzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Modulduer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-100</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Formale und mathematische Kompetenz: Begriffe, Algorithmen und mathematische Formalismen der linearen Algebra kennen, die für das Verständnis der angewandten Verfahren in der Numerik, Computergraphik, Bildverarbeitung und Animation erforderlich sind; Verfahren der linearen Algebra selbstständig auch in anderen Bereichen der angewandten Informatik einsetzen können.

Übergreifend: Kommunikative Kompetenz erwerben (Präsentation und Diskussion von Lösungsvorschlägen).
Teilmodul BIN-105-01 Mathematik 2

Untertitel
Lineare Algebra und analytische Geometrie (BIN-MAT2, MDI-MAT2)

Verantwortliche(r)
Pigors, Adrian, Prof. Dr.

Sprache
Deutsch

 Zuordnung zu Curricula
BIN, MDI

Veranstaltungsart, SWS
Vorlesung mit Übung, 4 SWS

Credits
6

Präsenzstunden / Selbststudium
68 h / 112 h

Studiensemester
2

Empfehlungen zum Selbststudium
Siehe Literatur

Empfohlene Voraussetzungen
BIN-100 oder MDI-100

Studien-/Prüfungsleistungen
Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Gruppengröße
100

Angestrebte Lernergebnisse
Formale und mathematische Kompetenz: Begriffe, Algorithmen und mathematische Formalismen der linearen Algebra kennen, die für das Verständnis der angewandten Verfahren in der Numerik, Computergraphik, Bildverarbeitung und Animation erforderlich sind; Verfahren der linearen Algebra selbstständig auch in anderen Bereichen der angewandten Informatik einsetzen können.
Übergreifend: Kommunikative Kompetenz erwerben (Präsentation und Diskussion von Lösungsvorschlägen).

Inhalt
Die vermittelten Grundlagen der linearen Algebra umfassen ausgewählte Themen aus den Bereichen
- Vektoren und Vektorräume,
- Matrizen und
- lineare Gleichungssysteme

Anforderungen der Präsenzzeit
Aktive Mitarbeit, selbstständiges Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung, selbstständiges Bearbeiten von Übungsaufgaben, Diskussion

Literatur
Skript zur Vorlesung
Teschl, G., Teschl, S.: Mathematik für Informatiker, Springer
Hartmann, P.: Mathematik für Informatiker, Vieweg
Locher, F.: Numerische Mathematik für Informatiker, Springer
Schwarz, H.R.: Numerische Mathematik, Teubner
Modul BIN-106 Datenbanksysteme 1

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-DBS1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-106-01 Datenbanksysteme 1, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Heine, Felix, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-102</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung), experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

- **Analyse-Kompetenz:** sich in einen Anwendungsbereich einarbeiten können, Anforderungen extrahieren können, eine komplexe Domäne erfassen, strukturieren und auf der Basis von ER-Diagrammen modellieren können
- **Design-Kompetenz:** aus Anforderungen einen Datenbankentwurf ableiten können
- **Technologische Kompetenz:** Datenbankentwurf als Prozess
- **Übergreifend:** soziale Kompetenzen (Teamarbeit), Transferkompetenz
Teilmodul BIN-106-01 Datenbanksysteme 1

Untertitel
(BIN-DBS1, MDI-DBS1)

Verantwortliche(r)
Heine, Felix, Prof. Dr.

Sprache
Deutsch

Zuordnung zu Curricula
BIN, MDI

Veranstaltungsart, SWS
Vorlesung mit Übung, 4 SWS

Credits
6

Präsenzstunden / Selbststudium
68 h / 112 h

Studiensemester
2

Empfehlungen zum Selbststudium
Siehe Literatur

Empfohlene Voraussetzungen
BIN-102 oder MDI-102

Studien-/ Prüfungsleistungen
Prüfung (Klausur oder mündliche Prüfung), experimentelle Arbeit

Gruppengröße
100

Angestrebte Lernergebnisse
Analyse-Kompetenz: sich in einen Anwendungsbereich einarbeiten können, Anforderungen extrahieren können, eine komplexe Domäne erfassen, strukturieren und auf der Basis von ER-Diagrammen modellieren können
Design-Kompetenz: aus Anforderungen einen Datenbankentwurf ableiten können
Technologische Kompetenz: Datenbankentwurf als Prozess
Übergreifend: soziale Kompetenzen (Teamaarbeit), Transferkompetenz

Inhalt
In Datenbanken werden wichtige Elemente und Konzepte wie Datenmodellierung und relationale Datenmodelle vorgestellt. Unter anderem werden folgende Themen behandelt:
- Erstellen eines Datenbankentwurfs und Umsetzung in ein Datenbankschema
- Datenmanipulation im Relationenmodell
- SQL
- Einführung in die Datenbankprogrammierung
- Normalisierung
Anhand eines Datenbanksystems wird der Stoff praktisch geübt und vertieft.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
R. Elmasri, S. Navathe; Grundlagen von Datenbanksystemen; Pearson Education, 2009
A. Heuer, G. Saake; Datenbanken: Konzepte und Sprachen; mitp, 2013
A. Kemper, A. Eickler; Datenbankensysteme; Oldenburg, 2015
Kudraß, T. (Hrsg.): Taschenbuch Datenbanken, Hanser, 2015
Modul BIN-107 Statistik

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-STAT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-107-01 Statistik, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Ahlers, Volker, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstdstudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-100</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Algorithmische und mathematische Kompetenz: Kennenlernen, Einsetzen, Vergleichen und Bewerten stochastischer Begriffe und Methoden zur Beschreibung und Analyse von Datenmengen

Interpretation und Bewertung von Ergebnissen stochastischer Methoden und statistischer Analysen

Übergreifend: kommunikative Kompetenz (Präsentation und Diskussion von Lösungsvorschlägen)
Teilmodul BIN-107-01 Statistik

Untertitel (BIN-STAT, MDI-STAT)
Verantwortliche(r) Ahlers, Volker, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenztunden / Selbststudium 68 h / 112 h
Studiensemester 2
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen BIN-100 oder MDI-100
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 100

Angestrebte Lernergebnisse
Algorithmische und mathematische Kompetenz: Kennenlernen, Einsetzen, Vergleichen und Bewerten stochastischer Begriffe und Methoden zur Beschreibung und Analyse von Datenmengen
Interpretation und Bewertung von Ergebnissen stochastischer Methoden und statistischer Analysen
Übergreifend: kommunikative Kompetenz (Präsentation und Diskussion von Lösungsvorschlägen)

Inhalt
Es werden grundlegende Begriffe und Methoden der Wahrscheinlichkeitstheorie und Statistik vermittelt, u.a.:
- Beschreibende Statistik: Mittelwert, Standardabweichung, Median, Quantile, Histogramm, Regressions- und Korrelationsverfahren
- Kombinatorik
- Wahrscheinlichkeitstheorie: Ereignis, Wahrscheinlichkeit, Satz von Bayes, Zufallsvariable, Erwartungswert, Varianz, diskrete und stetige Verteilungen, Hauptsatz der Statistik, Grenzwertsätze
- Pseudo-Zufallszahlen
- Schließende Statistik: Schätz- und Testverfahren, Signifikanzniveau, Fehler 1. und 2. Art
Zum Üben der Methoden wird entsprechende Standardsoftware vorgestellt und eingesetzt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Skript zur Vorlesung
Sachs, M.: Wahrscheinlichkeitsrechnung und Statistik, Hanser
Teschl, G., Teschl, S.: Mathematik für Informatiker, Band 2, Springer
Modul BIN-108 Programmieren 2

Untertitel (BIN-PR2)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-108-01 Programmieren 2, Pflicht
Verantwortliche(r) Garmann, Robert, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 2
Modulduer 1 Semester
Voraussetzungen nach Prüfungsordnung keine
Empfohlene Voraussetzungen BIN-102
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Algorithmische Kompetenz: eine konkrete Problemstellung analysieren und algorithmisch lösen können.
Analyse-Kompetenz: ein informell dargestelltes Problem mithilfe einer Modellierungssprache (UML) (semi-)formal beschreiben können.
Teilmodul BIN-108-01 Programmieren 2

Untertitel (BIN-PR2)
Verantwortliche(r) Garmann, Robert, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstdstudium 68 h / 112 h
Studiensemester 1
Empfehlungen zum Selbstdstudium siehe Literatur
Empfohlene Voraussetzungen BIN-102
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 70

Angestrebte Lernergebnisse
Algorithmische Kompetenz: eine konkrete Problemstellung analysieren und algorithmisch lösen können.
Analyse-Kompetenz: ein informell dargestelltes Problem mithilfe einer Modellierungssprache (UML) (semi-)formal beschreiben können.

Inhalt
Darüber hinaus werden die Grundlagen objektorientierter Analyse und Designs anhand des UML-Klassendiagramms eingeführt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung, Bearbeiten von Übungsaufgaben

Literatur
Skript zur Vorlesung
Reges, S., Stepp, M.: Building Java Programs, Prentice Hall
Modul BIN-109 Algorithmen und Datenstrukturen

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-109-01 Algorithmen und Datenstrukturen, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Kleiner, Carsten, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-102</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Formale und algorithmische Kompetenzen: Aufwandsabschätzungen mit Hilfe der O-Notation kennen und diese auf Algorithmen anwenden, Algorithmen bezüglich deren erwarteter Laufzeit vergleichen können, gute Algorithmen für wichtige Standardprobleme (z.B. Sortieren) kennen und vergleichen.

Teilmodul BIN-109-01 Algorithmen und Datenstrukturen

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-AD, MDI-AD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche(r)</td>
<td>Kleiner, Carsten, Prof. Dr.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zu Curricula</td>
<td>BIN, MDI</td>
</tr>
<tr>
<td>Veranstaltungsart, SWS</td>
<td>Vorlesung mit Übung, 4 SWS</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>2</td>
</tr>
<tr>
<td>Empfehlungen zum Selbststudium</td>
<td>Vorlesungsfolien und Literatur zur Vorlesung durcharbeiten, Reflektion und eigenständige Anwendung der Inhalte</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-102 oder MDI-109</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
<tr>
<td>Gruppengröße</td>
<td>100</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Formale und algorithmische Kompetenzen: Aufwandsabschätzungen mit Hilfe der O-Notation kennen und diese auf Algorithmen anwenden, Algorithmen bezüglich deren erwarteter Laufzeit vergleichen können, gute Algorithmen für wichtige Standardprobleme (z.B. Sortieren) kennen und vergleichen

Analyse-, Design- und Realisierungs-Kompetenzen: wichtige lineare und nicht-lineare Datenstrukturen kennen und sinnvoll für ein gegebenes Problem einsetzen können, verschiedene Implementierungsvarianten für wichtige Datenstrukturen kennen, vergleichen und auswählen können, effiziente Datenstrukturen und Algorithmen für neue Probleme entwickeln können, Datenstrukturen aus Standardbibliotheken kennen und effizient einsetzen können

Inhalt

Grundlegende Kenntnisse zur strukturierten und effizienten Software-Entwicklung: Analyse der Effizienz von Algorithmen, Lineare und nicht-lineare Datenstrukturen (Listen, Bäume, Heaps), Sortieralgorithmen, Paradigmen effizienter Algorithmen

Anforderungen der Präsenzzeit

Vorlesung: Verfolgen der Präsentationen und Beispiele, Diskussion, Nachvollziehen der Ausführung und Visualisierung mithilfe von Lehrsoftware, Reflektion der Inhalte, Selbständige Anwendbarkeit der Themen Übung; Selbständige Bearbeitung der Aufgaben in der Übung auf Papier und mithilfe von Lernsoftware, theoretische Aufgaben, Präsentation von Lösungen und Projektergebnissen

Anforderungen des Selbststudiums

Vor- und Nachbereitung der Vorlesungen und Übungen, Selbständige Bearbeitung von Aufgaben, Abgabe von Hausaufgaben in Kleingruppen, Bearbeitung einer laufenden Projektaufgabe in Kleingruppe, Prüfungsvor- und nachbereitung, Literaturstudium

Literatur

T.H. Cormen, C.E. Leiserson, R.L. Rivest; Introduction to Algorithms; MIT Press
Modul BIN-110 Programmieren 3

Untertitel C/C++ (BIN-PR3)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-110-01 Programmieren 3, Pflicht
Verantwortliche(r) Peine, Holger, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 3
Modulduer 1 Semester
Voraussetzungen nach keine
Prüfungsordnung
Empfohlene Voraussetzungen BIN-102 und BIN-108
Studien-/Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Technologische Kompetenzen: Studierende können mit den Werkzeugen gcc, g++ und make umgehen und Compiler- und Linker-Fehler verstehen
Design-, Realisierungs- und Methodenkompetenzen: Studierende verstehen das Speichermodell von C und können typische Programmierprobleme in C lösen. Studierende beherrschen die Kernkonzepte der Objektorientierung in C++ und können einfache Programmierprobleme in C lösen
Teilmodul BIN-110-01 Programmieren 3

Untertitel C/C++ (BIN-PR3)

Verantwortliche(r) Peine, Holger, Prof. Dr.

Sprache Deutsch

Zuordnung zu Curricula BIN

Veranstaltungart, SWS Vorlesung, 4 SWS

Credits 6

Präsenzstunden / Selbststudium 68 h / 112 h

Studiensemester 3

Empfehlungen zum Selbststudium Siehe Literatur

Empfohlene Voraussetzungen BIN-102 und BIN-108

Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Gruppengröße 70

Angestrebte Lernergebnisse
Technologische Kompetenzen: Studierende können mit den Werkzeugen gcc, g++ und make umgehen und Compiler- und Linker-Fehler verstehen

Inhalt
Struktur und Übersetzung von C-Programmen
Kontrollstrukturen
Datenorganisation
Zeiger
Funktionen
Ein-/Ausgabe
Überblick über C++
Referentypen
Klassen, Konstruktoren, Destructoren, Objektkomposition
Operatoren
Vererbung, Polymorphie

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Vogt, Carsten: C für Java Programmierer, Hanser 2007
C und C++ für Java-Programmierer, LUIS-Handbuch, Leibniz Universität IT-Service
Bruce Eckel: Thinking in C++, Prentice Hall
Modul BIN-111 Mathematik 3

Untertitel: Analysis (BIN-MAT3)
Modulniveau: Grundlagenmodul
Pflicht / Wahlpflicht: Pflichtmodul
Teilmodule: BIN-111-01 Mathematik 3, Pflicht
Verantwortliche(r): Pigors, Adrian, Prof. Dr.
Credits: 6
Präsenzstunden / Selbststudium: 68 h / 112 h
Studiensemester: 3
Moduldauer: 1 Semester
Voraussetzungen nach Prüfungsordnung: Keine
Empfohlene Voraussetzungen: BIN-100
Studien-/ Prüfungsleistungen: Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse

Formale, algorithmische und mathematische Kompetenz: Begriffe und Verfahren der Analysis und der numerischen Mathematik kennen, die für das Verständnis der Stochastik und der Anwendungen in den Bereichen Informationssysteme und Animation erforderlich sind; Verfahren selbstständig auch in anderen Bereichen der angewandten Informatik einsetzen können.
Übergreifend: kommunikative Kompetenz erwerben (Präsentation und Diskussion von Lösungsvorschlägen).
Teilmodul BIN-111-01 Mathematik 3

Untertitel Analysis
Verantwortliche(r) Pigors, Adrian, Prof. Dr.
Sprache Deutsch
 Zuordnung zu Curricula BIN
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstanstudium 68 h / 112 h
Studiensemester 3
Empfehlungen zum Selbstanstudium Siehe Literatur
Empfohlene Voraussetzungen BIN-100
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 70

Angestrebte Lernergebnisse
Formale, algorithmische und mathematische Kompetenz: Begriffe und Verfahren der Analysis und der numerischen Mathematik kennen, die für das Verständnis der Stochastik und der Anwendungen in den Bereichen Informationssysteme und Animation erforderlich sind; Verfahren selbstständig auch in anderen Bereichen der angewandten Informatik einsetzen können.
Übergreifend: kommunikative Kompetenz erwerben (Präsentation und Diskussion von Lösungsvorschlägen).

Inhalt
Ausgewählte Themen aus den Bereichen
- Stetigkeit und Grenzwerte von Funktionen,
- Funktionenreihen,
- Differentialrechnung in einer und mehreren Variablen und
- Integralrechnung in einer Variablen

Anforderungen der Präsenzzeit
Aktive Mitarbeit, selbstständiges Bearbeiten von Übungsaufgaben

Anforderungen des Selbstanstudiums
Vor- und Nachbereitung, selbstständiges Bearbeiten von Übungsaufgaben, Diskussion

Literatur
Skript zur Vorlesung
Teschl, G., Teschl, S.: Mathematik für Informatiker 1/2, Springer
Hartmann, P.: Mathematik für Informatiker, Vieweg
Brill, M.: Mathematik für Informatiker, Hanser
Locher, F.: Numerische Mathematik für Informatiker, Springer
Schwarz, H. R.: Numerische Mathematik, Teubner

Stand: 06. November 2019
Modul BIN-112 Betriebssysteme und Netze 1

Untertitel (BIN-BSN1)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-112-01 Betriebssysteme und Netze 1, Pflicht
Verantwortliche(r) Hovestadt, Matthias, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 3
Modulduauer 1 Semester
Voraussetzungen nach Prüfungsordnung keine
Empfohlene Voraussetzungen BIN-102, BIN-103 und BIN-108
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mdl. Prüfung) sowie experimentelle Arbeit

Angestrebte Lernergebnisse
Teilmodul BIN-112-01 Betriebssysteme und Netze 1

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-BSN1, MDI-BSN1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche(r)</td>
<td>Hovestadt, Matthias, Prof. Dr.</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zu Curricula</td>
<td>BIN, MDI</td>
</tr>
<tr>
<td>Veranstaltungsart, SWS</td>
<td>Vorlesung mit Übung, 4 SWS</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstdstudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-102, BIN-103 und BIN-108 bzw. MDI-102, MDI-103 und MDI-109</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mdl. Prüfung) sowie experimentelle Arbeit</td>
</tr>
<tr>
<td>Gruppengröße</td>
<td>100</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse
- Technologische Kompetenzen: Grundlegende Kenntnisse über Architektur, Aufbau und Funktionsweise von Betriebssystemen und Netzwerken, insbesondere Prozesskonzept, Dateiverwaltung und Schichtenmodell.
- Übergreifend: soziale Kompetenzen (Team-Arbeit), Transferkompetenz

Inhalt
- Grundlagen moderner Betriebssysteme, Geschichte des UNIX-Betriebsystems, Nutzung der Bash, Interrupts, Prozesse, Dateizugriff, Dateisysteme, Netzwerk-Zugriff, Schichtenmodell, Bitübertragungsschicht, Sicherungsschicht, Vermittlungsschicht, Transportschicht

Anforderungen der Präsenzzeit
- Aktive Teilnahme, Auseinandersetzung mit behandelten Problemstellungen

Anforderungen des Selbstdstudiums
- Vor- und Nachbereitung aller Veranstaltungen, Lesen bereitgestellter Literatur

Literatur
- Helmut Herold: Linux- Unix Grundlagen. Kommandos und Konzepte, Addison-Wesley
- H. Herold: Linux- Unix- Systemprogrammierung, Addison-Wesley
- Tanenbaum, Andrew S.: Moderne Betriebssysteme, Pearson Studium
Modul BIN-113 Datenbanksysteme 2

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-DBS2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-113-01 Datenbanksysteme 2, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Koschel, Arne, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68h h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>3</td>
</tr>
<tr>
<td>Modulldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>keine</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-106 und BIN-108</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Methodenkompetenz: Transferkompetenz für bestehende historisch gewachsene Datenzugriffstechnologien neue informatische Methoden in eine oft historisch gewachsene IT-Infrastruktur einzuführen.

Technologische Kompetenzen: Verständnis für die Konzepte und Funktionsweise von: DBS-Programmierung, O/R-Mapping, Persistenz-Frameworks; DBS-Transaktionen.
Teilmodul BIN-113-01 Datenbanksysteme 2

Untertitel (BIN-DBS2, MDI-DBS2)
Verantwortliche(r) Koschel, Arne, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 3
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen BIN-106 und BIN-108 bzw. MDI-107 und MDI-109
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 80

Angestrebte Lernergebnisse
Methodenkompetenz: Transferkompetenz für bestehende historisch gewachsene Datenzugriffsverfahren neue informatische Methoden in eine oft historisch gewachsene IT-Infrastruktur einzuführen.
Technologische Kompetenzen: Verständnis für die Konzepte und Funktionsweise von: DBS-Programmierung, O/R-Mapping, Persistenz-Frameworks; DBS-Transaktionen

Inhalt
Datenzugriffe und Datenverwaltung in Software- bzw. Informationssystemen - Konzepte, Technologien, Architekturen, Bewertung. Behandelte Themen beinhalten u.a.:
- DBS-interne Programmierung (Stored Procedures, Trigger)
- Relationale DB-Integration (statisch, dynamisch) für Client - DBS-Server
- Persistenz-Frameworks / O/R-Mapping
- DBS-Transaktionen
- eventuell fortgeschrittene Konzepte wie Key Value Stores oder OO-DBS

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben, Literatur lesen

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Skript zur Vorlesung
Heuer, A., Saake G., Sattler, K.: Datenbanken: Konzepte und Sprachen, mitp
Kudraß, T. (Hrsg.): Taschenbuch Datenbanken, Hanser
Aktuelle (Web-)Quellen, z.B. zum Java Persistence API.
Modul BIN-114 Programmierprojekt

Untertitel (BIN-PP)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-114-01 Programmierprojekt, Pflicht
Verantwortliche(r) Dunkel, Jürgen, Prof. Dr.
Credits 4
Präsenzstunden / Selbststudium 68 h / 52 h
Studiensemester 3
Moduldauer 1 Semester
Voraussetzungen nach keine
Prüfungsordnung
Empfohlene Voraussetzungen BIN-102 und BIN-108
Studien-/ Prüfungsleistungen Experimentelle Arbeit

Angestrebte Lernergebnisse
Design- und Realisierungskompetenzen: erworbenes technisches Wissen zur Lösung einer Problemstellung einsetzen; Erstellen und Testen eines größeren Software-Programms im Team
Projektmanagementkompetenz: Fähigkeit zur Organisation und Steuerung von Projekten
Soziale Kompetenzen: Teamarbeit, Kommunikation
Teilmodul BIN-114-01 Programmierprojekt

Untertitel (BIN-PP)
Verantwortliche(r) Dunkel, Jürgen, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN
Veranstaltungsort, SWS Projekt, 4 SWS
Credits 4
Präsenzstunden / Selbststudium 68 h / 52 h
Studiensemester 3
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen BIN-102 und BIN-108
Studien-/ Prüfungsleistungen Experimentelle Arbeit
Gruppengröße 70

Angestrebte Lernergebnisse
Design- und Realisierungskompetenzen: erworbenes technisches Wissen zur Lösung einer Problemstellung einsetzen; Erstellen und Testen eines größeren Software-Programms im Team
Projektmanagementkompetenz: Fähigkeit zur Organisation und Steuerung von Projekten
Soziale Kompetenzen: Teamarbeit, Kommunikation

Inhalt

Anforderungen der Präsenzzeit
Aktive Mitarbeit im Projekt, Wahrnehmung organisatorischer Aufgaben im Projektkontext

Anforderungen des Selbststudiums
Umsetzung der Projektaufgaben: bspw. Entwurf, Implementierung, Testen, Dokumentation

Literatur
Projektspezifisch
Modul BIN-115 Betriebswirtschaft

Untertitel (BIN-BW)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-115-01 Betriebswirtschaft, Pflicht
Verantwortliche(r) Peine, Holger, Prof. Dr.
Credits 2
Präsenzstunden / Selbststudium 34 h / 26 h
Studiensemester 3
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung keine
Empfohlene Voraussetzungen keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Teilmodul BIN-115-01 Betriebswirtschaft

Untertitel (BIN-BW, MDI-BW)
Verantwortliche(r) Peine, Holger, Prof. Dr.
Sprache Deutsch
 Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung, 2 SWS
Credits 2
Präsenzstunden / Selbststudium 34 h / 26 h
Studiensemester 3
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
 Gruppengröße 100

Angestrebte Lernergebnisse

Inhalt
Unternehmensziele, Rechtsformen der Betriebe, Steuerrecht, externes Rechnungswesen Betriebsorganisation, betrieblicher Leistungsprozess, betriebliche Kostenstrukturen, internes Rechnungswesen, betriebliche Kosten- und Leistungsrechnung

Anforderungen der Präsenzzeit
Aktive Mitarbeit

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Aktuelle Literaturempfehlungen werden in der Lehrveranstaltung bekannt gegeben.
Modul BIN-116 Englisch

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-EN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-116-01 Englisch, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Peine, Holger, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Prüsenzstunden / Selbststudium</td>
<td>34 h / 26 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Modulendauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und Hausarbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Teilmodul BIN-116-01 Englisch

Untertitel (BIN-EN, MDI-EN)
Verantwortliche(r) Peine, Holger, Prof. Dr.
Sprache Deutsch
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Übung, 2 SWS
Credits 2
Präsenztunden / Selbstdstudium 34 h / 26 h
Studiensemester 1
Empfehlungen zum Selbstdstudium Siehe Literatur
Empfohlene Voraussetzungen keine
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und Hausarbeit
Gruppengröße 20

Angestrebte Lernergebnisse

Inhalt
Erarbeiten der einzelnen Kapitel der eingesetzten Literatur einschließlich des Erlernes von fachbezogenem Vokabular, Besprechung von Themen zur Grammatik mit den dazugehörigen Übungen, Diskussionen zu fachbezogenen und allgemeinen Themen wie Softwareentwicklung, Kundenbetreuung, Umgang mit Kunden und Beschwerden, After-Sales-Service, Geschäftsreisen und Geschäftsessen, Small-Talk, Präsentationen

Anforderungen der Präsenzeit
Aktive Mitarbeit, Erstellen und Halten eines Vortrags

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung

Literatur
English for IT Professionals, Cornelsen Verlag
In Company, MacMillan Verlag
Log On - English for IT Professions, Hueber Verlag
Modul BIN-200 Computergrafik 1

Untertitel (BIN-CG1)

Modulniveau Grundlagenmodul

Pflicht / Wahlpflicht Pflichtmodul

Teilmodule BIN-200-01 Computergrafik 1, Pflicht

Verantwortliche(r) Sprengel, Frauke, Prof. Dr.

Credits 6

Präsenzstunden / Selbststudium 68 h / 112 h

Studiensemester 4

Modulduer 1 Semester

Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. Semesters

Empfohlene Voraussetzungen BIN-100, BIN-105, BIN-111, BIN-102, BIN-108 und BIN-110

Studien- / Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse

Teilmodul BIN-200-01 Computergrafik 1

Untertitel: (BIN-CG1)
Verantwortliche(r): Sprengel, Frauke, Prof. Dr.
Sprache: nach Vereinbarung
Zuordnung zu Curricula: BIN
Veranstaltungsart, SWS: Vorlesung mit Übung, 4 SWS
Credits: 6
Präsenzstunden / Selbststudium: 68 h / 112 h
Studiensemester: 4
Empfehlungen zum Selbststudium: siehe Literatur
Empfohlene Voraussetzungen: BIN-100, BIN-105, BIN-111, BIN-102, BIN-108 und BIN-110
Studien-/Prüfungsleistungen: Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße: 70

Angestrebte Lernergebnisse:

Inhalt:

Anforderungen der Präsenzzeit:
Aktive Mitarbeit, Selbständiges Bearbeiten von Übungsaufgaben, ggf. Projektarbeit in Gruppen, Diskussion

Anforderungen des Selbststudiums:
Vor- und Nachbereitung, Literaturarbeit, Selbständiges Bearbeiten von Projektaufgaben, ggf. in Gruppen

Literatur:
Skript zur Vorlesung
Alan Watt: 3D-Computergraphik, Pearson Studium
Alfred Nischwitz, Peter Haberäcker: Computergraphik und Bildverarbeitung, Vieweg
Modul BIN-201 Software Engineering 1

Untertitel (BIN-SE1)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-201-01 Software Engineering 1, Pflicht
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 4
Modulduer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. Semesters
Empfohlene Voraussetzungen BIN-102, BIN-108, BIN-110, BIN-106 und BIN-114
Studien-/Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Analyse-Kompetenz: sich in einen Anwendungsbereich einarbeiten können, Anforderungen extrahieren können, eine komplexe Domäne erfassen, strukturieren und modellieren können, Kenntnis von Standardsituationen im Bereich der Modellierung (Muster, Architekturen) haben
Design-Kompetenz: aus Anforderungen einen Systementwurf ableiten können (aus der Kenntnis von Standardarchitekturen), einen Systementwurf in eine produktiv einsetzbare Implementierung überführen können, Qualitätssicherung als integralen Bestandteil des Entwicklungsprojektes verstehen.
Übergreifend: Projekte aufsetzen und durchführen, soziale Kompetenzen (Teamarbeit), Transferkompetenz, eigenständiges Erarbeiten von neuen Methoden

Stand: 06. November 2019
Teilmodul BIN-201-01 Software Engineering 1

Untertitel (BIN-SE1, MDI-SE1)
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 4
Empfehlungen zum Selbststudium siehe Literatur
MDI-102, MDI-109, MDI-112 und MDI-107
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 100

Angestrebte Lernergebnisse
Analyse-Kompetenz: sich in einen Anwendungsbereich einarbeiten können, Anforderungen extrahieren können, eine komplexe Domäne erfassen, strukturieren und modellieren können, Kenntnis von Standardsituationen im Bereich der Modellierung (Muster, Architekturen) haben
Design-Kompetenz: aus Anforderungen einen Systementwurf ableiten können (aus der Kenntnis von Standardarchitekturen), einen Systementwurf in eine produktiv einsetzbare Implementierung überführen können, Qualitätssicherung als integralen Bestandteil des Entwicklungsprojektes verstehen.
Übergreifend: Projekte aufsetzen und durchführen, soziale Kompetenzen (Teamarbeit), Transferkompetenz, eigenständiges Erarbeiten von neuen Methoden

Inhalt
Vorgehensmodelle und Methoden zur Entwicklung großer Softwaresysteme, Entwurfsmuster (Patterns). Die unterschiedlichen Phasen und Arbeitsschritte der Softwareentwicklung werden im Detail anhand eines Standard-Software-Entwicklungsprozesses vorgestellt. Und zwar
- die Grundprinzipien, Ergebnisse und das Vorgehen werden für jede Phase der Software-Entwicklung behandelt - fortgeschrittene (UML-)Modellierung wird im Projektkontext praktiziert,
- eine Einführung in Analyse-, Entwurfs- und Architekturmustern gegeben und
- Basismethoden zur Qualitätssicherung vorgestellt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Grechenig, T., Bernhart, M., Breiteneder, R., Kappel, K.: Softwaretechnik, Pearson Studium.
Gamma, E. R., Helm, R. Johnson, J. Vlissides: Design Patterns, Reading, MA, Addison Wesley.

Stand: 06. November 2019
Modul BIN-202 Betriebssysteme und Netze 2

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-BSN2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-202-01 Betriebssysteme und Netze 2, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Hovestadt, Matthias, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4</td>
</tr>
<tr>
<td>Moduldaurn</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Prüfungen des 1. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-103, BIN-102, BIN-108 und BIN-112</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mdl. Prüfung) sowie experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Übergreifend: soziale Kompetenzen (Team-Arbeit), Transferkompetenz
Teilmodul BIN-202-01 Betriebssysteme und Netze 2

Untertitel (BIN-BSN2, MDI-BSN2)
Verantwortliche(r) Hovestadt, Matthias, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstitdium 68 h / 112 h
Studiensemester 4
Empfohlene Voraussetzungen BIN-103, BIN-102, BIN-108 und BIN-112 bzw. MDI-103, MDI-102, MDI-109 und MDI-114
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mdl. Prüfung) sowie experimentelle Arbeit
Gruppengröße 80

Angestrebte Lernergebnisse
Übergreifend: soziale Kompetenzen (Team-Arbeit), Transferkompetenz

Inhalt
Dateiprogrammierung, Teilung von Prozessen, Threads, Prozesskommunikation, Signale, Netzwerkprogrammierung, Routing Algorithmen, IPv6, Sicherheit in Netzwerken

Anforderungen der Präsenzzeit
Aktive Teilnahme, Auseinandersetzung mit behandelten Problemstellungen

Anforderungen des Selbststudiums
Vor- und Nachbereitung aller Veranstaltungen, Lesen bereitgestellter Literatur

Literatur
Helmut Herold: Linux- Unix Grundlagen. Kommandos und Konzepte, Addison-Wesley
H. Herold: Linux- Unix- Systemprogrammierung, Addison-Wesley
Tanenbaum, Andrew S.: Moderne Betriebssysteme, Pearson Studium
Modul BIN-203 Webtechnologien

Untertitel (BIN-WT)
Modulniveau Grundlagenmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-203-01 Webtechnologien, Pflicht
Verantwortliche(r) Dunkel, Jürgen, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 4
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1.Semesters
Empfohlene Voraussetzungen BIN-102, BIN-108, BIN-110 und BIN-112
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Technologische Kompetenz: Kennenlernen der grundlegenden Komponenten webbasierter Systeme, Verständnis über das Zusammenspiel dieser Komponenten auf Basis verschiedener Protokolle.
Realisierungs-Kompetenz: komplexe Websysteme mithilfe aktueller Technologien entwickeln und konfigurieren können.
Teilmodul BIN-203-01 Webtechnologien

Untertitel (BIN-WT, MDI-WT)
Verantwortliche(r) Dunkel, Jürgen, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstitud 68 h / 112 h
Studiensemester 4
Empfehlungen zum Selbststudium siehe Literatur
Empfohlene Voraussetzungen BIN-102, BIN-108, BIN-110 und BIN-112
bzw. MDI-102, MDI-109, MDI-112 and MDI-114
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 100

Angestrebte Lernergebnisse
Technologische Kompetenz: Kennenlernen der grundlegenden Komponenten webbasierter Systeme, Verständnis über das Zusammenspiel dieser Komponenten auf Basis verschiedener Protokolle.
Realisierungs-Kompetenz: komplexe Websysteme mithilfe aktueller Technologien entwickeln und konfigurieren können.

Inhalt
Grundlegende Konzepte und Technologien von Websystemen.
- Grundstruktur und Protokolle des Web (HTTP)
- Auszeichnungssprachen (HTML, CSS, XML, JSON)
- Serviceaufrufe per REST, Ajax
- Serverseitige Technologien (bspw. Servlets, JSF, PHP, ...)
- Clientseitige Technologien (JavaScript, Ajax)
- Ausgewählte Frameworks (bspw. Angular, ...)
- Durchführung eines Webprojekts

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben, Bearbeitung eines Projekts

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
A. Tannebaum: Computernetzwerke, Pearson.
P. Müller: Webseiten gestalten mit HTML und CSS, galileo.
A. Ertel, K. Laborenz: Responsive Web Design
M. Kurz: JavaServer Faces, dpunkt.
C. Wentz: JavaScript, galileo.
F. Malcher, et al.: Angular
weitere Literatur zu aktuellen Schwerpunkten
Modul BIN-204 Seminar

Untertitel (BIN-BSEM)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-204-01 Seminar, Pflicht
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Credits 4
Präsenzstunden / Selbststudium 34 h / 86 h
Studiensemester 4
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. Semesters
Empfohlene Voraussetzungen Alle Module der Semester 1 bis 3
Studien-/ Prüfungsleistungen Referat (Hausarbeit plus Präsentation/Vortrag)

Angestrebte Lernergebnisse
Fachliche Kompetenz: Im Seminar vertiefen die Studierenden exemplarisch Inhalte der vorherigen Lehrveranstaltungen oder ergänzen sie. Durch die Einarbeitung in neue fachliche Aspekte der Informatik werden die Analyse-Kompetenzen verbessert während sich die technologischen Kompetenzen durch die Beschäftigung mit den neuen Aspekten entsprechend erweitern.
Teilmodul BIN-204-01 Seminar

Untertitel (BIN-BSEM, MDI-BSEM)
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Seminar, 2 SWS
Credits 4
Präsenzstunden / Selbststudium 34 h / 86 h
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen Alle Module der Semester 1 bis 3
Studien-/ Prüfungsleistungen Referat (Hausarbeit plus Präsentation/Vortrag), Anwesenheitspflicht
Gruppengröße 12

Angestrebte Lernergebnisse
Fachliche Kompetenz: Im Seminar vertiefen die Studierenden exemplarisch Inhalte der vorherigen Lehrveranstaltungen oder ergänzen sie. Durch die Einarbeitung in neue fachliche Aspekte der Informatik werden die Analyse-Kompetenzen verbessert während sich die technologischen Kompetenzen durch die Beschäftigung mit neuen Aspekten entsprechend erweitern.

Inhalt
Die Studierenden erarbeiten selbstständig ein anspruchsvolles Thema, erstellen einen schriftlichen Bericht und präsentieren die Ergebnisse. Dabei werden wissenschaftliche Methoden und Techniken angewendet.

Anforderungen der Präsenzzeit
Eigenen Vortrag halten, Aktive Mitarbeit, Beteiligung an der Diskussion

Anforderungen des Selbststudiums
Selbstständige Einarbeitung in das Thema, Vortrag vorbereiten, Schriftliche Ausarbeitung erstellen

Literatur
Allgemein: Peter Rechenberg: Technisches Schreiben; Hanser Verlag; 2002
Michael Alley: The Craft of Scientific Writing; Springer Verlag; 2002
Konkrete Literatur zum Seminarthema wird von Dozent/in genannt.
Modul BIN-205 Software Engineering 2

Untertitel (BIN-SE2)

Modulniveau Grundlagenmodul

Pflicht / Wahlpflicht Pflichtmodul

Teilmodule BIN-205-01 Software Engineering 2, Pflicht

Verantwortliche(r) Bruns, Ralf, Prof. Dr.

Credits 6

Präsenzstunden / Selbststudium 68 h / 112 h

Studiensemester 5

Modulvoraussetzungen 1 Semester

Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. und 2. Semesters

Empfohlene Voraussetzungen BIN-201

Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse

Projektmanagement-Kompetenz: Projekte planen, kontrollieren/ steuern können; ökonomische Randbedingungen und deren Auswirkungen kennen und beurteilen; Menschenführung als Erfolgsfaktor begreifen

Design-Kompetenz: einen Systementwurf in eine produktiv einsetzbare Implementierung überführen können, Qualitätssicherung und Usability Engineering als integrale Bestandteile des Entwicklungsprojektes verstehen.

Technologische Kompetenz: fundierte Kenntnisse im ausgewählten Themengebiet der Softwaretechnik.

Übergreifend: Projekte aufsetzen und durchführen, soziale Kompetenzen (Teamarbeit), Transferkompetenz, eigenständiges Erarbeiten von neuen Methoden.

Stand: 06. November 2019
Teilmodul BIN-205-01 Software Engineering 2

Untertitel (BIN-SE2. MDI-SE2)
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstdstudium 68 h / 112 h
Studiensemester 5
Empfehlungen zum Selbstdstudium siehe Literatur
Empfohlene Voraussetzungen BIN-201 bzw. MDI-201
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 80

Angestrebte Lernergebnisse
Projektmanagement-Kompetenz: Projekte planen, kontrollieren/ steuern können; ökonomische Randbedingungen und deren Auswirkungen kennen und beurteilen; Menschenführung als Erfolgsfaktor begreifen
Design-Kompetenz: einen Systementwurf in eine produktiv einsetzbare Implementierung überführen können, Qualitätssicherung und Usability Engineering als integrale Bestandteile des Entwicklungsprojektes verstehen.

Inhalt
Fortgeschrittene Entwurfsmuster, klassische und agile Entwicklungsprozesse, Projektmanagement, Qualitätsmanagement, Usability Engineering, weitere ausgewählte Themen aus dem Bereich Softwaretechnik.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung

Literatur
Grechenig, T., Bernhart, M., Breiteneder, R., Kappel, K.: Softwaretechnik, Pearson Studium.
Gamma, E. R., Helm, R. Johnson, J. Vlissides: Design Patternrs, Reading, MA, Addison Wesley.
Balzert, H.: Lehrbuch der Softwaretechnik, Spektrum Akade. Verlag
Modul BIN-206 Praxisprojekt 1

Untertitel (BIN-BPR1)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Pflichtmodul
Teilmodule BIN-206-01 Praxisprojekt 1, Pflicht
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Credits 10
Präsenzstunden / Selbststudium 300 h / 0 h
Studiensemester 5
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. bis 3. Semesters
Empfohlene Voraussetzungen Projektspezifisch
Studien-/ Prüfungsleistungen Experimentelle Arbeit

Angestrebte Lernergebnisse
Analyse-Kompetenzen: eine gegebene Fragestellung unter Einsatz wissenschaftlicher Methoden und Erkenntnisse eigenständig analysieren können, sich in Aufgabenstellungen verschiedener Anwendungsfelder einarbeiten können.
Design-/Realisierung-Kompetenzen: Lösungsstrategien entwickeln und diese mit den erworbenen Kenntnissen umzusetzen können.
Technologische Kompetenzen: Wissen aus verschiedenen Bereichen kombinieren und zielgerichtet einsetzen können.
Methoden-Kompetenzen: verschiedene innovative Methoden zur Lösung praktischer Probleme anwenden können.
Projektmanagement-Kompetenz: Fähigkeit zur Projektplanung, zum Aufbau einer Organisationsstruktur und zur Steuerung von Projekten.
Soziale Kompetenzen: Anwendung von Konfliktlösungsstrategien, Teamarbeit, Kommunikation
Teilmodul BIN-206-01 Praxisprojekt 1

Untertitel (BIN-BPR1)
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN
Veranstaltungsart, SWS Projekt, 8 SWS
Credits 10
Präsenztunden / Selbststudium 300 h / 0 h
Studiensemester 5
Empfehlungen zum Selbststudium Projektspezifisch
Empfohlene Voraussetzungen Projektspezifisch
Studien-/ Prüfungsleistungen Experimentelle Arbeit
Gruppengröße 12

Angestrebte Lernergebnisse
Analyse-Kompetenzen: eine gegebene Fragestellung unter Einsatz wissenschaftlicher Methoden und Erkenntnisse eigenständig analysieren können, sich in Aufgabenstellungen verschiedener Anwendungsfelder einarbeiten können.
Design-/Realisierungs-Kompetenzen: Lösungsstrategien entwickeln und diese mit den erworbenen Kenntnissen umzusetzen können.
Technologische Kompetenzen: Wissen aus verschiedenen Bereichen kombinieren und zielgerichtet einsetzen können.
Methoden-Kompetenzen: verschiedene innovative Methoden zur Lösung praktischer Probleme anwenden können.
Projektmanagement-Kompetenz: Fähigkeit zur Projektplanung, zum Aufbau einer Organisationsstruktur und zur Steuerung von Projekten.
Soziale Kompetenzen: Anwendung von Konfliktlösungsstrategien, Teamarbeit, Kommunikation

Inhalt

Anforderungen der Präsenzzeit
Aktive Mitarbeit im Projekt

Anforderungen des Selbststudiums
Eigenständige Erarbeitung von Aufgabenstellungen

Literatur
Projektspezifisch
Modul BIN-207 Computergrafik 2

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>Digitale Bildverarbeitung (BIN-CG2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Grundlagenmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-207-01 Computergrafik 2, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Ginkel, Ingo, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Alle Modulprüfungen des 1. und 2. Semesters</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-100, BIN-105, BIN-111, BIN-107 und BIN-200</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

- Algorithmische und mathematische Kompetenz: Kennenlernen und Einsetzen von Verfahren der digitalen Bildverarbeitung,
- Analyse- und Design-Kompetenz: Auswahl und Einsatz geeigneter Verfahren für die Bildverbesserung in verschiedenen Anwendungsszenarien und ihre Realisierung in Hard- und Software
- Fachübergreifende Kompetenz durch theoretische und praktische Erfahrungen im Einsatz digitaler Bildverarbeitungsverfahren in verschiedenen Anwendungsbereichen
- soziale Kompetenzen durch Teamarbeit und Präsentation und Diskussion von Lösungsvorschlägen für ausgewählte Aufgaben
Teilmodul BIN-207-01 Computergrafik 2

Untertitel: Digitale Bildverarbeitung (BIN-CG2, MDI-CG2)
Verantwortliche(r): Ginkel, Ingo, Prof. Dr.
Sprache: nach Vereinbarung
Zuordnung zu Curricula: BIN, MDI
Veranstaltungsart, SWS: Vorlesung mit Übung, 4 SWS
Credits: 6
Präsenzstunden / Selbststudium: 68 h / 112 h
Studiensemester: 5
Empfehlungen zum Selbststudium: Siehe Literatur
Empfohlene Voraussetzungen: BIN-100, BIN-105, BIN-111, BIN-107 and BIN-200
bzw. MDI-100, MDI-106, MDI-108, MDI-105 and MDI-200
Studien-/ Prüfungsleistungen: Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße: 80

Angestrebte Lernergebnisse
Algorithmische und mathematische Kompetenz: Kennenlernen und Einsetzen von Verfahren der digitalen Bildverarbeitung,
Analyse- und Design-Kompetenz: Auswahl und Einsatz geeigneter Verfahren für die Bildverbesserung in verschiedenen Anwendungsszenarien und ihre Realisierung in Hard- und Software
Fachübergreifende Kompetenz durch theoretische und praktische Erfahrungen im Einsatz digitaler Bildverarbeitungsverfahren in verschiedenen Anwendungsbereichen
soziale Kompetenzen durch Teamarbeit und Präsentation und Diskussion von Lösungsvorschlägen für ausgewählte Aufgaben

Inhalt
Grundkenntnisse über Aufbau und Funktionsweise digitaler Bildverarbeitungssysteme mit praktischen Anwendungen:
Grundbegriffe digitaler Bilder und ihrer Darstellung im Orts- und Frequenzraum
Farbmodelle und Farbmanagement
Verfahren zur Bildverbesserung im Orts- und im Frequenzraum
Einfache Bildsegmentierungsverfahren
Implementierungen von Bildverarbeitungsalgorithmen

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Skript zur Vorlesung
Jähne, B. Digitale Bildverarbeitung, Springer - Verlag
Modul BIN-208 Praxisprojekt 2

Untertitel (BIN-BPR2)

Modulniveau Vertiefungsmodul

Pflicht / Wahlpflicht Pflichtmodul

Teilmodule BIN-208-01 Praxisprojekt 2, Pflicht

Verantwortliche(r) Bruns, Ralf, Prof. Dr.

Credits 7

Präsenzstunden / Selbststudium 210 h / 0 h

Studiensemester 6

Moduldauer 1 Semester

Voraussetzungen nach PrüfungsordnungAlle Modulprüfungen des 1. bis 3. Semesters

Empfohlene Voraussetzungen Projektspezifisch

Studien-/Prüfungsleistungen Experimentelle Arbeit

Angestrebte Lernergebnisse

Analyse-Kompetenzen: eine gegebene Fragestellung unter Einsatz wissenschaftlicher Methoden und Erkenntnisse eigenständig analysieren können, sich in Aufgabenstellungen verschiedener Anwendungsfelder einarbeiten können.

Design-/Realisierungs-Kompetenzen: Lösungsstrategien entwickeln und diese mit den erworbenen Kenntnissen umzusetzen können.

Technologische Kompetenzen: Wissen aus verschiedenen Bereichen kombinieren und zielgerichtet einsetzen können.

Methoden-Kompetenzen: verschiedene innovative Methoden zur Lösung praktischer Probleme anwenden können.

Projektmanagement-Kompetenz: Fähigkeit zur Projektplanung, zum Aufbau einer Organisationsstruktur und zur Steuerung von Projekten.

Soziale Kompetenzen: Anwendung von Konfliktlösungsstrategien, Teamarbeit, Kommunikation

Stand: 06. November 2019

Seite 54 von 76
Teilmodul BIN-208-01 Praxisprojekt 2

Untertitel (BIN-BPR2)
Verantwortliche(r) Bruns, Ralf, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN
Veranstaltungsart, SWS Projekt, 6 SWS
Credits 7
Präsenzstunden / Selbststudium 210 h / 0 h
Studiensemester 6
Empfehlungen zum Selbststudium Projektspezifisch
Empfohlene Voraussetzungen Projektspezifisch
Studien-/ Prüfungsleistungen Experimentelle Arbeit
Gruppengröße 12

Angestrebte Lernergebnisse
Analyse-Kompetenzen: eine gegebene Fragestellung unter Einsatz wissenschaftlicher Methoden und Erkenntnisse eigenständig analysieren können, sich in Aufgabenstellungen verschiedener Anwendungsfelder einarbeiten können.
Design-/Realisierungs-Kompetenzen: Lösungsstrategien entwickeln und diese mit den erworbenen Kenntnissen umzusetzen können.
Technologische Kompetenzen: Wissen aus verschiedenen Bereichen kombinieren und zielgerichtet einsetzen können.
Methoden-Kompetenzen: verschiedene innovative Methoden zur Lösung praktischer Probleme anwenden können.
Projektmanagement-Kompetenz: Fähigkeit zur Projektplanung, zum Aufbau einer Organisationsstruktur und zur Steuerung von Projekten.
Soziale Kompetenzen: Anwendung von Konfliktlösungsstrategien, Teamarbeit, Kommunikation

Inhalt
Fortsetzung des Moduls BIN-206 aus dem vorigen Semester.

Anforderungen der Präsenzzeit
Aktive Mitarbeit im Projekt

Anforderungen des Selbststudiums
Eigenständige Erarbeitung von Aufgabenstellungen

Literatur
Projektspezifisch
Modul BIN-209 Ergänzende Fächer (Variierendes Angebot der Wahlpflichtfächer)

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-EF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Hovestadt, Matthias, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstitum</td>
<td>102 h / 78 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>4</td>
</tr>
<tr>
<td>Moduldaumer</td>
<td>3 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Themenabhängig</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mdl. Prüfung) sowie experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Die Studierenden verbreitern die im Fach angewandte Informatik erworbenen Kenntnisse durch den Erwerb von Kompetenzen in einem überfachlichen Themengebiet. (Variierendes Angebot der Wahlpflichtfächer; es müssen drei Fächer gewählt werden, davon mindestens ein BWL-Fach.)
Modul BIN-210 Bachelorarbeit mit Kolloquium

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-BAA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-210-01 Bachelorarbeit mit Kolloquium, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Kleiner, Carsten, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>15</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstd.</td>
<td>0 h / 450 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>6</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Bestandene Vorprüfung, mind. 134 CP erworben aus anderen Modulen des</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td>BIN-Programms</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Alle Module des gewählten Themengebiets sowie BIN-204 und BIN-206</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleist.</td>
<td>Abschlussarbeit, Kolloquium</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

- Analyse-, Design- und Realisierungskompetenzen: einen Themenbereich aus der gewählten Fächergruppe selbständig analysieren und nach wissenschaftlichen Methoden bearbeiten können, Lösungen konzeptionieren und realisieren
- Technologische Kompetenzen: Technologien aus dem gewählten Themenbereich auswählen und zur Problemlösung einsetzen können
- Fachübergreifende Kompetenzen: das gewählte Thema soll in Zusammenarbeit mit einem Wirtschaftsunternehmen bearbeitet werden, die Rahmenbedingungen des Unternehmens sind in die Lösung einzubeziehen
- Methodenkompetenzen: Stand des Wissens zum gewählten Thema mit wissenschaftlichen Methoden erschließen können, bekannte Lösungen für das gegebene Thema anpassen und erweitern können
- Projektmanagement-Kompetenz: Themenstellung in einer vorgegebenen Zeit bearbeiten können, Planung der erforderlichen Teilaufgaben und Überwachung des Zeitplans, Selbstorganisation durchführen und Fertigstellungstermin einhalten
- Selbstkompetenz: gewähltes Thema sowie entwickelte Lösung fachgerecht präsentieren können, fachliche Fragen dazu beantworten können, alternative Lösungen diskutieren und einschätzen können
Teilmodul BIN-210-01 Bachelorarbeit mit Kolloquium

Untertitel (BIN-BAA)
Verantwortliche(r) Kleiner, Carsten, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN
Veranstaltungsort, SWS Abschlussarbeit
Credits 15
Präsenzstunden / Selbststudium 0 h / 450 h
Studiensemester 6
Empfehlungen zum Selbststudium Wissenschaftliche Auseinandersetzung mit dem Thema, Parallele Arbeit an Inhalten und Bachelorarbeitsdokument, regelmäßige Treffen und Diskussion mit dem Betreuenden
Empfohlene Voraussetzungen Alle Module des gewählten Themengebiets sowie BIN-204 und BIN-206
Studien-/ Prüfungsleistungen Abschlussarbeit, Kolloquium
Gruppengröße 1

Angestrebte Lernergebnisse
Analyse-, Design- und Realisierungskompetenzen: einen Themenbereich aus der gewählten Fächergruppe selbständig analysieren und nach wissenschaftlichen Methoden bearbeiten können, Lösungen konzeptionieren und realisieren
Technologische Kompetenzen: Technologien aus dem gewählten Themenbereich auswählen und zur Problemlösung einsetzen können
Fachübergreifende Kompetenzen: das gewählte Thema soll in Zusammenarbeit mit einem Wirtschaftsunternehmen bearbeitet werden, die Rahmenbedingungen des Unternehmens sind in die Lösung einzubeziehen
Methodenkompetenzen: Stand des Wissens zum gewählten Thema mit wissenschaftlichen Methoden erschließen können, bekannte Lösungen für das gegebene Thema anpassen und erweitern können
Projektmanagement-Kompetenz: Themenumstellung in einer vorgegebenen Zeit bearbeiten können, Planung der erforderlichen Teilaufgaben und Überwachung des Zeitplans, Selbstorganisation durchführen und Fertigstellungstermin einhalten
Selbstkompetenz: gewähltes Thema sowie entwickelte Lösung fachgerecht präsentieren können, fachliche Fragen dazu beantworten können, alternative Lösungen diskutieren und einschätzen können

Inhalt
Selbständige Bearbeitung eines Themas aus der Angewandten Informatik nach wissenschaftlichen Methoden, Erstellung einer schriftlichen Ausarbeitung, Präsentation der Ergebnisse und kritische Diskussion des Themas; das Thema soll aus dem Bereich eines Wirtschaftsunternehmens stammen oder direkt dort bearbeitet werden

Anforderungen der Präsenzzeit
Keine

Anforderungen des Selbststudiums
Eigenständige wissenschaftliche Arbeit, Erstellung eines Dokuments, Vorbereitung und Durchführung einer Präsentation

Literatur
Themenabhängig
Modul BIN-211 Computergrafik 3

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>Animation (BIN-CG3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>MDI-216-01 Computergrafik 3, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Ginkel, Ingo, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Modulprüfungen des 1. und 2. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-200</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Algorithmische und mathematische Kompetenz: Kennenlernen, Einsetzen, Vergleichen und Bewerten von Techniken und Methoden zur computergestützen Animation und Simulation, Implementierung und praktische Bewertung verschiedener Verfahren

Übergreifend: kommunikative Kompetenz (Präsentation und Diskussion von Lösungsvorschlägen)
Teilmodul MDI-216-01 Computergrafik 3

Untertitel
Animation (MDI-CG3, BIN-CG3)

Verantwortliche(r)
Ginkel, Ingo, Prof. Dr.

Sprache
nach Vereinbarung

Zuordnung zu Curricula
MDI, BIN

Veranstaltungsart, SWS
Vorlesung mit Übung, 4 SWS

Credits
6

Präsenzstunden / Selbststudium
68 h / 112 h

Studiensemester
5

Empfehlungen zum Selbststudium
Siehe Literatur

Empfohlene Voraussetzungen
MDI-200 bzw. BIN-200

Studien-/ Prüfungsleistungen
Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Gruppengröße
40

Angestrebte Lernergebnisse

Inhalt
Grundlagen der Animation, Beschreibung von Bahnkurven für Kamerabewegungen mit Splines, Orientierung im Raum und Interpolation mit Quaternionen, Physikalisch basierte Animation mit Partikelsystemen, Masse-Feder-Systeme, Bounding-Box und Raumteilungsverfahren (z.B. Octrees oder kd-Trees), hierarchische Animation, kinematische Ketten

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Skript zur Vorlesung
Ericson, C.: Real-Time Collision Detection, Elsevier
Witkin, A.: Physically Based Modeling - Principles and Practice, Siggraph Course Notes
Modul BIN-212 Software Engineering 3

Untertitel (BIN-SE3)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Wahlpflichtmodul
Teilmodule BIN-212-01 Software Engineering 3, Pflicht
Verantwortliche(r) Koschel, Arne, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. und 2. Semesters
Empfohlene Voraussetzungen BIN-201 and BIN-203
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Technologische Kompetenz: Verständnis für die Funktionsweise von verteilten Systemen besitzen.
Realisierungs-Kompetenz: Technisch komplexe Softwareinfrastrukturen konfigurieren und einsetzen können.
Teilmodul BIN-212-01 Software Engineering 3

Untertitel (BIN-SE3, MDI-SE3)
Verantwortliche(r) Koschel, Arne, Prof.Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen BIN-201 und BIN-203 bzw. MDI-201 und MDI-203
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse
Technologische Kompetenz: Verständnis für die Funktionsweise von verteilten Systemen besitzen.
Realisierungs-Kompetenz: Technisch komplexe Softwareinfrastrukturen konfigurieren und einsetzen können.

Inhalt
Grundlegende Konzepte von Softwarearchitekturen, insbesondere zur Entwicklung verteilter Systeme.
- Softwarearchitekturen, Architektursichten
- Architekturumsetzung im Detail: Frameworkentwicklung am Beispiel eines einfachen Persistenzsystems
- Grundkonzepte verteilter Systeme, verteilte Softwarearchitekturen, Mehrrchichtenarchitekturen, Middleware, SOA
- Implementierung verteilter Systeme mit bspw.: Sockets, RMI, MoM, Web Services, Java EE/EJB Application Server
- Eventuell ausgewählte aktuelle Beispiele weiterer Middleware-Konzepte in Kurzform

Anforderungen der Präsenzzeit
Aktive Mitarbeit, bearbeiten von Übungsaufgaben, Literatur lesen

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung

Literatur
Skr ipt zur Vorlesung sowie folgende Bücher (jew. neueste Auflage):
- M. Gharbi, A. Koschel, A. Rausch, G. Starke: Basiswissen für Softwarearchitekten, dpunkt
- J. Dunkel, A. Holitschke: Softwarearchitektur für die Praxis, Springer
- J. Dunkel et al.: Systemarchitekturen für verteilte Anwendungen, Hanser
Modul BIN-213 Betriebssysteme und Netze 3

Untertitel (BIN-BSN3)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Wahlpflichtmodul
Teilmodule BIN-213-01 Betriebssysteme und Netze 3, Pflicht
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. und 2. Semesters
Empfohlene Voraussetzungen Alle Module der Semester 1 bis 3 sowie BIN-112 und BIN-202
Studien-/Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Analyse- und Realisierungskompetenz: Bewertung der Eigenschaften und Einsatzbereiche der Techniken.
Teilmodul BIN-213-01 Betriebssysteme und Netze 3

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-BSN3, MDI-BSN3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche(r)</td>
<td>Wohlfeil, Stefan, Prof. Dr.</td>
</tr>
<tr>
<td>Sprache</td>
<td>nach Vereinbarung</td>
</tr>
<tr>
<td>Zuordnung zu Curricula</td>
<td>BIN, MDI</td>
</tr>
<tr>
<td>Veranstaltungsart, SWS</td>
<td>Vorlesung mit Übung, 4 SWS</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Alle Module der Semester 1 bis 3 sowie BIN-112 und BIN-202 bzw. MDI-114 und MDI-219</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
<tr>
<td>Gruppengröße</td>
<td>30</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Technologische Kompetenzen: Grundlegende Kenntnisse über Architektur, Aufbau und Funktionsweise von Betriebssystemen und Netzwerken, Aktuelle Trends und neueste Techniken.

Analyse- und Realisierungskompetenz: Bewertung der Eigenschaften und Einsatzbereiche der Techniken.

Inhalt

Neue und aktuelle Trends im Bereich Betriebssysteme und Netze

Anforderungen der Präsenzzeit

Anforderungen des Selbststudiums

Vor- und Nachbereitung aller Veranstaltungen. Studium des bereitgestellten Materials; Vertiefung der Kenntnisse durch zusätzliche Literatur.

Literatur

Wird von Lehrenden genannt.
Modul BIN-214 Datenbanksysteme 3

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-DBS3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-214-01 Datenbanksysteme 3, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Kleiner, Carsten, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Modulduauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Modulprüfungen des 1. und 2. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-113 und BIN-109</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse
Formale und algorithmische Kompetenzen: Modellierungstechniken von Daten für ein Datenbanksystem kennen und implementieren können, Verarbeitung und Optimierung von Anfragen an ein Datenbanksystem und zugehöriger Algorithmen kennen und beurteilen können, Kenntnisse und Anwendung von Standard- und neuartigen Datenorganisationssstrategien in Datenbanksystemen
Analyse-, Design und Realisierungskompetenzen: Prinzipien zur automatisierten Datenprotokollierung und -wiederherstellung sowie zur Optimierung von Datenbanksystemen kennen, anwenden und realisieren können
Technologische Kompetenzen: interne Organisation und Speicherverwaltung eines Datenbanksystems kennen, Kenntnis und Anwendung von Techniken neuartiger interner Datenorganisation in Datenbanksystemen
Teilmodul BIN-214-01 Datenbanksysteme 3

Untertitel (BIN-DBS3, MDI-DBS3)
Verantwortliche(r) Kleiner, Carsten, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenztunden / Selbstdstudium 68 h / 112 h
Studiensemester 5
Empfehlungen zum Selbstdstudium Vorlesungsfolien und Literatur zur Vorlesung durcharbeiten, Reflektion und eigenständige Anwendung der Inhalte
Empfohlene Voraussetzungen BIN-113 und BIN-109 bzw. MDI-221 und MDI-202
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse
Formale und algorithmische Kompetenzen: Modellierungstechniken von Daten für ein Datenbanksystem kennen und implementieren können, Verarbeitung und Optimierung von Anfragen an ein Datenbanksystem und zugehöriger Algorithmen kennen und beurteilen können, Kenntnisse und Anwendung von Standard- und neuartigen Datenorganisationstechniken in Datenbanksystemen
Analyse-, Design und Realisierungskompetenzen: Prinzipien zur automatisierten Datenprotokollierung und -wiederherstellung sowie zur Optimierung von Datenbanksystemen kennen, anwenden und realisieren können.
Technologische Kompetenzen: interne Organisation und Speicherverwaltung eines Datenbanksystem kennen, Kenntnis und Anwendung von Techniken neuartiger interner Datenorganisation in Datenbanksystemen

Inhalt
Interne Datenbank- und Speicherorganisation, Verarbeitung, Ausführung und Optimierung von Anfragen, Aufwandschätzung von Anfragen, Algorithmen zur Anfrageausführung, Backup und Recovery von Datenbanksystemen, neuartige Speicherorganisation in Datenbanksystemen (Hauptspeicher, spaltenorientierte Daten, parallele Verarbeitung)

Anforderungen der Präsenzzeit

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung der Vorlesungen und Übungen, Selbständige Bearbeitung von Aufgaben, Abgabe von Hausaufgaben in Kleingruppen, Bearbeitung einer laufenden Projektaufgabe in Kleingruppe, Prüfungsvor- und nachbereitung, Literaturstudium

Literatur
R. Elmasri, S. Navathe: Grundlagen von Datenbanksystemen, Pearson Studium
Modul BIN-215 Parallele Programmierung

Untertitel (BIN-PAR)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Wahlpflichtmodul
Teilmodule BIN-215-01 Parallele Programmierung, Pflicht
Verantwortliche(r) Peine, Holger, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. und 2. Semesters
Empfohlene Voraussetzungen BIN-102 und BIN-108
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Technologische Kompetenzen:
Studierende können die wesentlichen Mittel der Programmersprache Java und ihrer Standardbibliothek zur Entwicklung paralleler Anwendungen einsetzen
Design-, Realisierungs- und Methodenkompetenzen: Studierende können Anwendungen in nebendarfenden Teile zerlegen; können Zugriffsfilme, Verklemmungen und unnötige Performance-Engpässe erkennen und vermeiden; können zwischen Programmiermodellen mit und ohne gemeinsame Daten entscheiden
Teilmodul BIN-215-01 Parallele Programmierung

Untertitel (BIN-PAR, MDI-PAR)
Verantwortliche(r) Peine, Holger, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Empfehlungen zum Selbststudium Siehe Literatur
Empfohlene Voraussetzungen BIN-102 und BIN-108 bzw.
MDI-102 und MDI-109
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse
Technologische Kompetenzen:
Studierende können die wesentlichen Mittel der Programmiersprache Java und ihrer Standardbibliothek zur Entwicklung paralleler Anwendungen einsetzen
Design-, Realisierungs- und Methodenkompetenzen: Studierende können Anwendungen in nebenläufige Teile zerlegen; können Zugriffskonflikte, Verklemmungen und unnötige Performance-Engpässe erkennen und vermeiden; können zwischen Programmiermodellen mit und ohne gemeinsame Daten entscheiden

Inhalt
Prozesse und Threads
Zugriffskonflikte, Datenkonsistenz
Nebenläufigkeit und kausale Abhängigkeit
(Bedingte) kritische Abschnitte
Sichtbarkeit
Semaphore
Verklemmungen
Nichtblockierende Synchronisierung
Strukturierung in nebenläufige Tasks und andere Entwurfsmuster
Actor-Modell
Cluster-Programmierung
Parallelisierung durch Compiler

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung

Literatur
Urs Gleim, Tobias Schüle: Multicore-Software, dpunkt 2012
Brian Goetz: Java Concurrency in Practice, Addison -Wesley 2006
Peter S. Pacheco: Parallel programming with MPI, Kaufmann 1997
Modul BIN-216 Aktuelle Aspekte der Informatik 1

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-AAI1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moduliniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-216-01 Aktuelle Aspekte der Informatik 1, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Salzwedel, Jussi, M. Sc.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Modulprüfungen des 1. bis 3. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Themenabhängig</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse
Technologische, methodische und übergreifende Kompetenzen: Die Studierenden sollen vertiefte Kenntnisse in einem aktuellen Themenbereich der Informatik erwerben. Sie sollen die zugehörigen Technologien und Methoden einsetzen sowie aktuelle Entwicklungen einschätzen und kritisch beurteilen können.
Teilmodul BIN-216-01 Aktuelle Aspekte der Informatik 1

Untertitel (BIN-AAI1, MDI-AAI1)
Verantwortliche(r) Salzwedel, Jussi, M.Sc.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Empfehlungen zum Selbststudium Themenabhängig
Empfohlene Voraussetzungen Themenabhängig
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse
Technologische, methodische und übergreifende Kompetenzen: Die Studierenden sollen vertiefte Kenntnisse in einem aktuellen Themenbereich der Informatik erwerben. Sie sollen die zugehörigen Technologien und Methoden einsetzen sowie aktuelle Entwicklungen einschätzen und kritisch beurteilen können.

Inhalt
Es werden Inhalte zu aktuellen Fragestellungen der Informatik ausgewählt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbststudiums
Vor- und Nachbereitung, Literaturstudium

Literatur
Themenabhängig
Modul BIN-217 Aktuelle Aspekte der Informatik 2

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-AAI2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-217-01 Aktuelle Aspekte der Informatik 2, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Salzwedel, Jussi, M. Sc.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbststudium</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Modulprüfungen des 1. bis 3. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Themenabhängig</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse

Technologische, methodische und übergreifende Kompetenzen: Die Studierenden sollen vertiefte Kenntnisse in einem aktuellen Themenbereich der Informatik erwerben. Sie sollen die zugehörigen Technologien und Methoden einsetzen sowie aktuelle Entwicklungen einschätzen und kritisch beurteilen können.
Teilmodul BIN-217-01 Aktuelle Aspekte der Informatik 2

Untertitel (BIN-AAI2, MDI-AAI2)
Verantwortliche(r) Salzwedel, Jussi, M.Sc.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstdstudium 68 h / 112 h
Empfehlungen zum Selbstdstudium Themenabhängig
Empfohlene Voraussetzungen Themenabhängig
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse

Technologische, methodische und übergreifende Kompetenzen: Die Studierenden sollen vertiefte Kenntnisse in einem aktuellen Themenbereich der Informatik erwerben. Sie sollen die zugehörigen Technologien und Methoden einsetzen sowie aktuelle Entwicklungen einschätzen und kritisch beurteilen können.

Inhalt
Es werden Inhalte zu aktuellen Fragestellungen der Informatik ausgewählt.

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung, Literaturstudium

Literatur
Themenabhängig
Modul BIN-218 Wissenschaftliches Arbeiten in der Informatik

Untertitel (BIN-WAI)
Modulniveau Vertiefungsmodul
Pflicht / Wahlpflicht Wahlpflichtmodul
Teilmodule BIN-218-01 Wissenschaftliches Arbeiten in der Informatik, Pflicht
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Moduldauer 1 Semester
Voraussetzungen nach Prüfungsordnung Alle Modulprüfungen des 1. und 2. Semesters
Empfohlene Voraussetzungen Alle Modulprüfungen der Semester 1 bis 4
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit

Angestrebte Lernergebnisse
Teilmodul BIN-218-01 Wissenschaftliches Arbeiten in der Informatik

Untertitel (BIN-WAI, MDI-WAI)
Verantwortliche(r) Wohlfeil, Stefan, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsort, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbstdstudium 68 h / 112 h
Studiensemester 5
Empfohlene Voraussetzungen Alle Modulprüfungen der Semester 1 bis 4
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse

Inhalt

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Bearbeiten von Übungsaufgaben, Anwenden des Gelernten indem eine Hausarbeit zu einem Informatik-Thema erstellt wird, die den Anforderungen an eine wissenschaftliche Arbeit genügt.

Anforderungen des Selbstdstudiums
Vor- und Nachbereitung aller Veranstaltungen, finden eines Informatik-Themas und schreiben einer Hausarbeit zu diesem Thema.

Literatur
Wird von Lehrenden genannt.
Modul BIN-219 Kryptographie und Algorithmen

<table>
<thead>
<tr>
<th>Untertitel</th>
<th>(BIN-KA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulniveau</td>
<td>Vertiefungsmodul</td>
</tr>
<tr>
<td>Pflicht / Wahlpflicht</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Teilmodule</td>
<td>BIN-219-01 Kryptographie und Algorithmen, Pflicht</td>
</tr>
<tr>
<td>Verantwortliche(r)</td>
<td>Sprengel, Frauke, Prof. Dr.</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Präsenzstunden / Selbstdienst</td>
<td>68 h / 112 h</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>5</td>
</tr>
<tr>
<td>Moduldauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Alle Modulprüfungen des 1. und 2. Semesters</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>BIN-100, BIN-105</td>
</tr>
<tr>
<td>Studien-/ Prüfungsleistungen</td>
<td>Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit</td>
</tr>
</tbody>
</table>

Angestrebte Lernergebnisse
Fachübergreifende Kompetenzen: Kennen die (z.T. gemeinsamen) Grundlagen von IT-Sicherheit und Graphik, können die erlernten Verfahren selbständig auch in anderen Bereichen der angewandten Informatik einsetzen. Kommunikationskompetenz (Präsentation und Diskussion von Lösungen.)
Teilmodul BIN-219-01 Kryptographie und Algorithmen

Untertitel (BIN-KA, MDI-KA)
Verantwortliche(r) Sprengel, Frauke, Prof. Dr.
Sprache nach Vereinbarung
Zuordnung zu Curricula BIN, MDI
Veranstaltungsart, SWS Vorlesung mit Übung, 4 SWS
Credits 6
Präsenzstunden / Selbststudium 68 h / 112 h
Studiensemester 5
Empfehlungen zum Selbststudium siehe Literatur
Empfohlene Voraussetzungen BIN-100, BIN-105 bzw. MDI-100, MDI-106
Studien-/ Prüfungsleistungen Prüfung (Klausur oder mündliche Prüfung) und experimentelle Arbeit
Gruppengröße 30

Angestrebte Lernergebnisse

Inhalt
Zahlentheoretische und algebraische Grundlagen in kryptographischen Verfahren; Algorithmen und Laufzeiten; Anwendungsbeispiele, Veranschaulichung mit Hilfe entsprechender Standardsoftware

Anforderungen der Präsenzzeit
Aktive Mitarbeit, Selbständiges Bearbeiten von Übungsaufgaben, Diskussion

Anforderungen des Selbststudiums
Vor- und Nachbereitung, Literaturarbeit, Selbständiges Bearbeiten von Übungsaufgaben, Diskussion

Literatur
Skr ipt zur Vorlesung
Johannes Buchmann: Einführung in die Kryptographie, Springer, neueste Auflage
Roland Matthes: Algebra, Kryptologie und Kodierungstheorie, Hanser, neueste Auflage
Dietlinde Lau: Algebra und Diskrete Mathematik I, Springer, neueste Auflage